skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banerjee, Chitrak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. В статье приведены доказательства результатов, сформулированных в работе C. Banerjee, L. Sakhanenko, D. C. Zhu Global rate optimality of integral curve estimators in high order tensor models, опубликованной в журнале Теория вероятностей и ее применения, 2023, 68(2), с. 95-115. 
    more » « less
  2. Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным. 
    more » « less